UMR168 – Physico Chimie Curie Lab

Team Publications

Year of publication 2018

Blanch-Mercader C., Yashunsky V., Garcia S., Duclos G., Giomi L., Silberzan P. (2018 Oct 9)

Turbulent dynamics of epithelial cell cultures

Phys. Rev. Lett. : 120 : 208001 : DOI : 10.1103/PhysRevLett.120.208101 Learn more
Summary

We investigate the large length and long time scales collective flows and structural rearrangements within in vitro human bronchial epithelial cell (HBEC) cultures. Activity-driven collective flows result in ensembles of vortices randomly positioned in space. By analyzing a large population of vortices, we show that their area follows an exponential law with a constant mean value and their rotational frequency is size independent, both being characteristic features of the chaotic dynamics of active nematic suspensions. Indeed, we find that HBECs self- organize in nematic domains of several cell lengths. Nematic defects are found at the interface between domains with a total number that remains constant due to the dynamical balance of nucleation and annihilation events. The mean velocity fields in the vicinity of defects are well described by a hydrodynamic theory of extensile active nematics.

Fold up
Duclos G., Blanch-Mercader C., Yashunsky V., Salbreux G., Joanny J.-F., Prost J., Silberzan P. (2018 Oct 3)

Spontaneous shear flow in confined cellular nematics

Nature Physics : DOI : 10.1038/s41567-018-0099-7 Learn more
Summary

In embryonic development or tumour evolution, cells often migrate collectively within confining tracks defined by their microenvironment1,2. In some of these situations, the displacements within a cell strand are antiparallel3, giving rise to shear flows. However, the mechanisms underlying these spontaneous flows remain poorly understood. Here, we show that an ensemble of spindle-shaped cells plated in a well-defined stripe spontaneously develops a shear flow whose characteristics depend on the width of the stripe. On wide stripes, the cells self-organize in a nematic phase with a director at a well-defined angle with the stripe’s direction, and develop a shear flow close to the stripe’s edges. However, on stripes narrower than a critical width, the cells perfectly align with the stripe’s direction and the net flow vanishes. A hydrodynamic active gel theory provides an understanding of these observations and identifies the transition between the non-flowing phase oriented along the stripe and the tilted phase exhibiting shear flow as a Fréedericksz transition driven by the activity of the cells. This physical theory is grounded in the active nature of the cells and based on symmetries and conservation laws, providing a generic mechanism to interpret in vivo antiparallel cell displacements.

Fold up
Feng-Ching Tsai, Aurelie Bertin, Hugo Bousquet, John Manzi, Yosuke Senju, Meng-Chen Tsai, Laura Picas, Stephanie Miserey-Lenkei, Pekka Lappalainen, Emmanuel Lemichez, Evelyne Coudrier, Patricia Bassereau (2018 Sep 30)

Ezrin enrichment on curved membranes requires a specific conformation or interaction with a curvature-sensitive partner.

elife : 7 : e37262 : DOI : 10.7554/eLife.37262 Learn more
Summary

One challenge in cell biology is to decipher the biophysical mechanisms governing protein enrichment on curved membranes and the resulting membrane deformation. The ERM protein ezrin is abundant and associated with cellular membranes that are flat, positively or negatively curved. Using in vitro and cell biology approaches, we assess mechanisms of ezrin’s enrichment on curved membranes. We evidence that wild-type ezrin (ezrinWT) and its phosphomimetic mutant T567D (ezrinTD) do not deform membranes but self-assemble anti-parallelly, zipping adjacent membranes. EzrinTD’s specific conformation reduces intermolecular interactions, allows binding to actin filaments, which reduces membrane tethering, and promotes ezrin binding to positively-curved membranes. While neither ezrinTD nor ezrinWT senses negative curvature alone, we demonstrate that interacting with curvature-sensing I-BAR-domain proteins facilitates ezrin enrichment in negatively-curved membrane protrusions. Overall, our work demonstrates that ezrin can tether membranes, or be targeted to curved membranes, depending on conformations and interactions with actin and curvature-sensing binding partners.

Fold up
De Franceschi Nicola, Miihkinen Mitro Hamidi Hellyeh, Alanko Jonna, Mai Anja Picas Laura, Guzmán Camilo, Lévy Daniel, Mattjus Peter, Goult Benjamin T., Goud Bruno, Ivaska Johanna (2018 Aug 20)

ProLIF – quantitative integrin protein-protein interactions and synergistic membrane effects on proteoliposomes.

Journal of Cell Science : DOI : 10.1242/jcs.214270 Learn more
Summary

Integrin transmembrane receptors control a wide range of biological interactions by triggering the assembly of large multiprotein complexes at their cytoplasmic interface. Diverse methods have been used to investigate interactions between integrins and intracellular proteins, and predominantly include peptide-based pulldowns and biochemical immuno-isolations from detergent-solubilised cell lysates. However, quantitative methods to probe integrin-protein interactions in a more biologically relevant context where the integrin is embedded within a lipid bilayer have been lacking. Here, we describe ‘protein-liposome interactions by flow cytometry’ (denoted ProLIF), a technique to reconstitute recombinant integrin transmembrane domains (TMDs) and cytoplasmic tail (CT) fragments in liposomes as individual subunits or as αβ heterodimers and, via flow cytometry, allow rapid and quantitative measurement of protein interactions with these membrane-embedded integrins. Importantly, the assay can analyse binding of fluorescent proteins directly from cell lysates without further purification steps. Moreover, the effect of membrane composition, such as PI(4,5)P2 incorporation, on protein recruitment to the integrin CTs can be analysed. ProLIF requires no specific instrumentation and can be applied to measure a broad range of membrane-dependent protein-protein interactions with the potential for high-throughput/multiplex analyses

Fold up