Systems Biology of Cell Polarity and Cell Division

Publications list

Year of publication 2020

Andrea Dimitracopoulos, Pragya Srivastava, Agathe Chaigne, Zaw Win, Roie Shlomovitz, Oscar M Lancaster, Maël Le Berre, Matthieu Piel, Kristian Franze, Guillaume Salbreux, Buzz Baum (2020 Aug 1)

Mechanochemical Crosstalk Produces Cell-Intrinsic Patterning of the Cortex to Orient the Mitotic Spindle.

Current biology : CB : DOI : S0960-9822(20)30984-2 Learn more
Summary

Proliferating animal cells are able to orient their mitotic spindles along their interphase cell axis, setting up the axis of cell division, despite rounding up as they enter mitosis. This has previously been attributed to molecular memory and, more specifically, to the maintenance of adhesions and retraction fibers in mitosis [1-6], which are thought to act as local cues that pattern cortical Gαi, LGN, and nuclear mitotic apparatus protein (NuMA) [3, 7-18]. This cortical machinery then recruits and activates Dynein motors, which pull on astral microtubules to position the mitotic spindle. Here, we reveal a dynamic two-way crosstalk between the spindle and cortical motor complexes that depends on a Ran-guanosine triphosphate (GTP) signal [12], which is sufficient to drive continuous monopolar spindle motion independently of adhesive cues in flattened human cells in culture. Building on previous work [1, 12, 19-23], we implemented a physical model of the system that recapitulates the observed spindle-cortex interactions. Strikingly, when this model was used to study spindle dynamics in cells entering mitosis, the chromatin-based signal was found to preferentially clear force generators from the short cell axis, so that cortical motors pulling on astral microtubules align bipolar spindles with the interphase long cell axis, without requiring a fixed cue or a physical memory of interphase shape. Thus, our analysis shows that the ability of chromatin to pattern the cortex during the process of mitotic rounding is sufficient to translate interphase shape into a cortical pattern that can be read by the spindle, which then guides the axis of cell division.

Fold up
Martina Bonucci, Nicolas Kuperwasser, Serena Barbe, Vonda Koka, Delphine de Villeneuve, Chi Zhang, Nishit Srivastava, Xiaoying Jia, Matthew P Stokes, Frank Bienaimé, Virginie Verkarre, Jean Baptiste Lopez, Fanny Jaulin, Marco Pontoglio, Fabiola Terzi, Benedicte Delaval, Matthieu Piel, Mario Pende (2020 Jun 26)

mTOR and S6K1 drive polycystic kidney by the control of Afadin-dependent oriented cell division.

Nature communications : 3200 : DOI : 10.1038/s41467-020-16978-z Learn more
Summary

mTOR activation is essential and sufficient to cause polycystic kidneys in Tuberous Sclerosis Complex (TSC) and other genetic disorders. In disease models, a sharp increase of proliferation and cyst formation correlates with a dramatic loss of oriented cell division (OCD). We find that OCD distortion is intrinsically due to S6 kinase 1 (S6K1) activation. The concomitant loss of S6K1 in Tsc1-mutant mice restores OCD but does not decrease hyperproliferation, leading to non-cystic harmonious hyper growth of kidneys. Mass spectrometry-based phosphoproteomics for S6K1 substrates revealed Afadin, a known component of cell-cell junctions required to couple intercellular adhesions and cortical cues to spindle orientation. Afadin is directly phosphorylated by S6K1 and abnormally decorates the apical surface of Tsc1-mutant cells with E-cadherin and α-catenin. Our data reveal that S6K1 hyperactivity alters centrosome positioning in mitotic cells, affecting oriented cell division and promoting kidney cysts in conditions of mTOR hyperactivity.

Fold up
Nishit Srivastava, David Traynor, Matthieu Piel, Alexandre J Kabla, Robert R Kay (2020 Jan 23)

Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods.

Proceedings of the National Academy of Sciences of the United States of America : DOI : 201905730 Learn more
Summary

Blebs and pseudopods can both power cell migration, with blebs often favored in tissues, where cells encounter increased mechanical resistance. To investigate how migrating cells detect and respond to mechanical forces, we used a “cell squasher” to apply uniaxial pressure to cells chemotaxing under soft agarose. As little as 100 Pa causes a rapid (<10 s), sustained shift to movement with blebs rather than pseudopods. Cells are flattened under load and lose volume; the actin cytoskeleton is reorganized, with myosin II recruited to the cortex, which may pressurize the cytoplasm for blebbing. The transition to bleb-driven motility requires extracellular calcium and is accompanied by increased cytosolic calcium. It is largely abrogated in cells lacking the Piezo stretch-operated channel; under load, these cells persist in using pseudopods and chemotax poorly. We propose that migrating cells sense pressure through Piezo, which mediates calcium influx, directing movement with blebs instead of pseudopods.

Fold up

Year of publication 2019

Ritsuya Niwayama, Prachiti Moghe, Yan-Jun Liu, Dimitri Fabrèges, Frank Buchholz, Matthieu Piel, Takashi Hiiragi (2019 Nov 19)

A Tug-of-War between Cell Shape and Polarity Controls Division Orientation to Ensure Robust Patterning in the Mouse Blastocyst.

Developmental cell : DOI : S1534-5807(19)30856-1 Learn more
Summary

Oriented cell division patterns tissues by modulating cell position and fate. While cell geometry, junctions, cortical tension, and polarity are known to control division orientation, relatively little is known about how these are coordinated to ensure robust patterning. Here, we systematically characterize cell division, volume, and shape changes during mouse pre-implantation development by in toto live imaging. The analysis leads us to a model in which the apical domain competes with cell shape to determine division orientation. Two key predictions of the model are verified experimentally: when outside cells of the 16-cell embryo are released from cell shape asymmetry, the axis of division is guided by the apical domain. Conversely, orientation cues from the apical domain can be overcome by applied shape asymmetry in the 8-cell embryo. We propose that such interplay between cell shape and polarity in controlling division orientation ensures robust patterning of the blastocyst and possibly other tissues.

Fold up
Clotilde Cadart, Larisa Venkova, Pierre Recho, Marco Cosentino Lagomarsino, Matthieu Piel (2019 Aug 19)

The physics of cell-size regulation across timescales

Nature Physics : 15 : 993–1004 : DOI : 10.1038/s41567-019-0629-y Learn more
Summary

Fold up
Lucie Barbier, Pablo J Sáez, Rafaele Attia, Ana-Maria Lennon-Duménil, Ido Lavi, Matthieu Piel, Pablo Vargas (2019 Apr 30)

Myosin II Activity Is Selectively Needed for Migration in Highly Confined Microenvironments in Mature Dendritic Cells.

Frontiers in immunology : 747 : DOI : 10.3389/fimmu.2019.00747 Learn more
Summary

Upon infection, mature dendritic cells (mDCs) migrate from peripheral tissue to lymph nodes (LNs) to activate T lymphocytes and initiate the adaptive immune response. This fast and tightly regulated process is tuned by different microenvironmental factors, such as the physical properties of the tissue. Mechanistically, mDCs migration mostly relies on acto-myosin flow and contractility that depend on non-muscular Myosin IIA (MyoII) activity. However, the specific contribution of this molecular motor for mDCs navigation in complex microenvironments has yet to be fully established. Here, we identified a specific role of MyoII activity in the regulation of mDCs migration in highly confined microenvironments. Using microfluidic systems, we observed that during mDCs chemotaxis in 3D collagen gels under defined CCL21 gradients, MyoII activity was required to sustain their fast speed but not to orientate them toward the chemokine. Indeed, despite the fact that mDCs speed declined, these cells still migrated through the 3D gels, indicating that this molecular motor has a discrete function during their motility in this irregular microenvironment. Consistently, using microchannels of different sizes, we found that MyoII activity was essential to maintain fast cell speed specifically under strong confinement. Analysis of cell motility through micrometric holes further demonstrated that cell contractility facilitated mDCs passage only over very small gaps. Altogether, this work highlights that high contractility acts as an adaptation mechanism exhibited by mDCs to optimize their motility in restricted landscapes. Hence, MyoII activity ultimately facilitates their navigation in highly confined areas of structurally irregular tissues, contributing to the fine-tuning of their homing to LNs to initiate adaptive immune responses.

Fold up
Hélène D Moreau, Carles Blanch-Mercader, Rafaele Attia, Mathieu Maurin, Zahraa Alraies, Doriane Sanséau, Odile Malbec, Maria-Graciela Delgado, Philippe Bousso, Jean-François Joanny, Raphaël Voituriez, Matthieu Piel, Ana-Maria Lennon-Duménil (2019 Apr 16)

Macropinocytosis Overcomes Directional Bias in Dendritic Cells Due to Hydraulic Resistance and Facilitates Space Exploration.

Developmental cell : 171-188.e5 : DOI : S1534-5807(19)30235-7 Learn more
Summary

The migration of immune cells can be guided by physical cues imposed by the environment, such as geometry, rigidity, or hydraulic resistance (HR). Neutrophils preferentially follow paths of least HR in vitro, a phenomenon known as barotaxis. The mechanisms and physiological relevance of barotaxis remain unclear. We show that barotaxis results from the amplification of a small force imbalance by the actomyosin cytoskeleton, resulting in biased directional choices. In immature dendritic cells (DCs), actomyosin is recruited to the cell front to build macropinosomes. These cells are therefore insensitive to HR, as macropinocytosis allows fluid transport across these cells. This may enhance their space exploration capacity in vivo. Conversely, mature DCs down-regulate macropinocytosis and are thus barotactic. Modeling suggests that HR may help guide these cells to lymph nodes where they initiate immune responses. Hence, DCs can either overcome or capitalize on the physical obstacles they encounter, helping their immune-surveillance function.

Fold up
Juan Manuel Garcia-Arcos, Renaud Chabrier, Mathieu Deygas, Guilherme Nader, Lucie Barbier, Pablo José Sáez, Aastha Mathur, Pablo Vargas, Matthieu Piel (2019 Feb 13)

Reconstitution of cell migration at a glance.

Journal of cell science : DOI : jcs225565 Learn more
Summary

Single cells migrate in a myriad of physiological contexts, such as tissue patrolling by immune cells, and during neurogenesis and tissue remodeling, as well as in metastasis, the spread of cancer cells. To understand the basic principles of single-cell migration, a reductionist approach can be taken. This aims to control and deconstruct the complexity of different cellular microenvironments into simpler elementary constrains that can be recombined together. This approach is the cell microenvironment equivalent of reconstituted systems that combine elementary molecular players to understand cellular functions. In this Cell Science at a Glance article and accompanying poster, we present selected experimental setups that mimic different events that cells undergo during migration These include polydimethylsiloxane (PDMS) devices to deform whole cells or organelles, micro patterning, nano-fabricated structures like grooves, and compartmentalized collagen chambers with chemical gradients. We also outline the main contribution of each technique to the understanding of different aspects of single-cell migration.

Fold up
Maria Duda, Natalie J Kirkland, Nargess Khalilgharibi, Melda Tozluoglu, Alice C Yuen, Nicolas Carpi, Anna Bove, Matthieu Piel, Guillaume Charras, Buzz Baum, Yanlan Mao (2019 Jan 30)

Polarization of Myosin II Refines Tissue Material Properties to Buffer Mechanical Stress.

Developmental cell : 245-260.e7 : DOI : S1534-5807(18)31088-8 Learn more
Summary

As tissues develop, they are subjected to a variety of mechanical forces. Some of these forces are instrumental in the development of tissues, while others can result in tissue damage. Despite our extensive understanding of force-guided morphogenesis, we have only a limited understanding of how tissues prevent further morphogenesis once the shape is determined after development. Here, through the development of a tissue-stretching device, we uncover a mechanosensitive pathway that regulates tissue responses to mechanical stress through the polarization of actomyosin across the tissue. We show that stretch induces the formation of linear multicellular actomyosin cables, which depend on Diaphanous for their nucleation. These stiffen the epithelium, limiting further changes in shape, and prevent fractures from propagating across the tissue. Overall, this mechanism of force-induced changes in tissue mechanical properties provides a general model of force buffering that serves to preserve the shape of tissues under conditions of mechanical stress.

Fold up

Year of publication 2018

Grégory Beaune, Carles Blanch-Mercader, Stéphane Douezan, Julien Dumond, David Gonzalez-Rodriguez, Damien Cuvelier, Thierry Ondarçuhu, Pierre Sens, Sylvie Dufour, Michael P Murrell, Françoise Brochard-Wyart (2018 Dec 4)

Spontaneous migration of cellular aggregates from giant keratocytes to running spheroids.

Proceedings of the National Academy of Sciences of the United States of America : 12926-12931 : DOI : 10.1073/pnas.1811348115 Learn more
Summary

Despite extensive knowledge on the mechanisms that drive single-cell migration, those governing the migration of cell clusters, as occurring during embryonic development and cancer metastasis, remain poorly understood. Here, we investigate the collective migration of cell on adhesive gels with variable rigidity, using 3D cellular aggregates as a model system. After initial adhesion to the substrate, aggregates spread by expanding outward a cell monolayer, whose dynamics is optimal in a narrow range of rigidities. Fast expansion gives rise to the accumulation of mechanical tension that leads to the rupture of cell-cell contacts and the nucleation of holes within the monolayer, which becomes unstable and undergoes dewetting like a liquid film. This leads to a symmetry breaking and causes the entire aggregate to move as a single entity. Varying the substrate rigidity modulates the extent of dewetting and induces different modes of aggregate motion: “giant keratocytes,” where the lamellipodium is a cell monolayer that expands at the front and retracts at the back; “penguins,” characterized by bipedal locomotion; and “running spheroids,” for nonspreading aggregates. We characterize these diverse modes of collective migration by quantifying the flows and forces that drive them, and we unveil the fundamental physical principles that govern these behaviors, which underscore the biological predisposition of living material to migrate, independent of length scale.

Fold up
Daniel A Fletcher, Junsang Doh, Matthieu Piel (2018 Nov 27)

Preface.

Methods in cell biology : xiii : DOI : S0091-679X(18)30175-4 Learn more
Summary

Fold up
Arthur Charles-Orszag, Feng-Ching Tsai, Daria Bonazzi, Valeria Manriquez, Martin Sachse, Adeline Mallet, Audrey Salles, Keira Melican, Ralitza Staneva, Aurélie Bertin, Corinne Millien, Sylvie Goussard, Pierre Lafaye, Spencer Shorte, Matthieu Piel, Jacomine Krijnse-Locker, Françoise Brochard-Wyart, Patricia Bassereau, Guillaume Duménil (2018 Oct 27)

Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting.

Nature communications : 4450 : DOI : 10.1038/s41467-018-06948-x Learn more
Summary

The shape of cellular membranes is highly regulated by a set of conserved mechanisms that can be manipulated by bacterial pathogens to infect cells. Remodeling of the plasma membrane of endothelial cells by the bacterium Neisseria meningitidis is thought to be essential during the blood phase of meningococcal infection, but the underlying mechanisms are unclear. Here we show that plasma membrane remodeling occurs independently of F-actin, along meningococcal type IV pili fibers, by a physical mechanism that we term ‘one-dimensional’ membrane wetting. We provide a theoretical model that describes the physical basis of one-dimensional wetting and show that this mechanism occurs in model membranes interacting with nanofibers, and in human cells interacting with extracellular matrix meshworks. We propose one-dimensional wetting as a new general principle driving the interaction of cells with their environment at the nanoscale that is diverted by meningococci during infection.

Fold up
Mirjana Weimershaus, François-Xavier Mauvais, Loredana Saveanu, Cézaire Adiko, Joël Babdor, Anastasia Abramova, Sebastian Montealegre, Myriam Lawand, Irini Evnouchidou, Katharina Julia Huber, Alexandra Chadt, Markus Zwick, Pablo Vargas, Michael Dussiot, Ana Maria Lennon-Dumenil, Thomas Brocker, Hadi Al-Hasani, Peter van Endert (2018 Sep 27)

Innate Immune Signals Induce Anterograde Endosome Transport Promoting MHC Class I Cross-Presentation.

Cell reports : 3568-3581 : DOI : S2211-1247(18)31312-3 Learn more
Summary

Both cross-presentation of antigens by dendritic cells, a key pathway triggering T cell immunity and immune tolerance, and survival of several pathogens residing in intracellular vacuoles are intimately linked to delayed maturation of vesicles containing internalized antigens and microbes. However, how early endosome or phagosome identity is maintained is incompletely understood. We show that Toll-like receptor 4 (TLR4) and Fc receptor ligation induces interaction of the GTPase Rab14 with the kinesin KIF16b mediating plus-end-directed microtubule transport of endosomes. As a result, Rab14 recruitment to phagosomes delays their maturation and killing of an internalized pathogen. Enhancing anterograde transport by overexpressing Rab14, promoting the GTP-bound Rab14 state, or inhibiting retrograde transport upregulates cross-presentation. Conversely, reducing Rab14 expression, destabilizing Rab14 endosomes, and inhibiting anterograde microtubule transport by Kif16b knockdown compromise cross-presentation. Therefore, regulation of early endosome trafficking by innate immune signals is a critical parameter in cross-presentation by dendritic cells.

Fold up
Clotilde Cadart, Sylvain Monnier, Jacopo Grilli, Pablo J Sáez, Nishit Srivastava, Rafaele Attia, Emmanuel Terriac, Buzz Baum, Marco Cosentino-Lagomarsino, Matthieu Piel (2018 Aug 18)

Size control in mammalian cells involves modulation of both growth rate and cell cycle duration.

Nature communications : 3275 : DOI : 10.1038/s41467-018-05393-0 Learn more
Summary

Despite decades of research, how mammalian cell size is controlled remains unclear because of the difficulty of directly measuring growth at the single-cell level. Here we report direct measurements of single-cell volumes over entire cell cycles on various mammalian cell lines and primary human cells. We find that, in a majority of cell types, the volume added across the cell cycle shows little or no correlation to cell birth size, a homeostatic behavior called “adder”. This behavior involves modulation of G1 or S-G2 duration and modulation of growth rate. The precise combination of these mechanisms depends on the cell type and the growth condition. We have developed a mathematical framework to compare size homeostasis in datasets ranging from bacteria to mammalian cells. This reveals that a near-adder behavior is the most common type of size control and highlights the importance of growth rate modulation to size control in mammalian cells.

Fold up
Elvira Infante, Alessia Castagnino, Robin Ferrari, Pedro Monteiro, Sonia Agüera-González, Perrine Paul-Gilloteaux, Mélanie J Domingues, Paolo Maiuri, Matthew Raab, Catherine M Shanahan, Alexandre Baffet, Matthieu Piel, Edgar R Gomes, Philippe Chavrier (2018 Jun 24)

LINC complex-Lis1 interplay controls MT1-MMP matrix digest-on-demand response for confined tumor cell migration.

Nature communications : 2443 : DOI : 10.1038/s41467-018-04865-7 Learn more
Summary

Cancer cells’ ability to migrate through constricting pores in the tissue matrix is limited by nuclear stiffness. MT1-MMP contributes to metastasis by widening matrix pores, facilitating confined migration. Here, we show that modulation of matrix pore size or of lamin A expression known to modulate nuclear stiffness directly impinges on levels of MT1-MMP-mediated pericellular collagenolysis by cancer cells. A component of this adaptive response is the centrosome-centered distribution of MT1-MMP intracellular storage compartments ahead of the nucleus. We further show that this response, including invadopodia formation in association with confining matrix fibrils, requires an intact connection between the nucleus and the centrosome via the linker of nucleoskeleton and cytoskeleton (LINC) complex protein nesprin-2 and dynein adaptor Lis1. Our results uncover a digest-on-demand strategy for nuclear translocation through constricted spaces whereby confined migration triggers polarization of MT1-MMP storage compartments and matrix proteolysis in front of the nucleus depending on nucleus-microtubule linkage.

Fold up