UMR3244 – Dynamics of Genetic Information

Team Publications

Year of publication 2019

Emilia Puig Lombardi, Allyson Holmes, Daniela Verga, Marie-Paule Teulade-Fichou, Alain Nicolas, Arturo Londoño-Vallejo (2019 May 23)

Thermodynamically stable and genetically unstable G-quadruplexes are depleted in genomes across species.

Nucleic acids research : gkz463 : 2019-2020 : DOI : 10.1093/nar/gkz463 Learn more
Summary

G-quadruplexes play various roles in multiple biological processes, which can be positive when a G4 is involved in the regulation of gene expression or detrimental when the folding of a stable G4 impairs DNA replication promoting genome instability. This duality interrogates the significance of their presence within genomes. To address the potential biased evolution of G4 motifs, we analyzed their occurrence, features and polymorphisms in a large spectrum of species. We found extreme bias of the short-looped G4 motifs, which are the most thermodynamically stable in vitro and thus carry the highest folding potential in vivo. In the human genome, there is an over-representation of single-nucleotide-loop G4 motifs (G4-L1), which are highly conserved among humans and show a striking excess of the thermodynamically least stable G4-L1A (G3AG3AG3AG3) sequences. Functional assays in yeast showed that G4-L1A caused the lowest levels of both spontaneous and G4-ligand-induced instability. Analyses across 600 species revealed the depletion of the most stable G4-L1C/T quadruplexes in most genomes in favor of G4-L1A in vertebrates or G4-L1G in other eukaryotes. We discuss how these trends might be the result of species-specific mutagenic processes associated to a negative selection against the most stable motifs, thus neutralizing their detrimental effects on genome stability while preserving positive G4-associated biological roles.

Fold up
Aria Ronsmans, Maxime Wery, Ugo Szachnowski, Camille Gautier, Marc Descrimes, Evelyne Dubois, Antonin Morillon, Isabelle Georis (2019 Mar 1)

Transcription-dependent spreading of the Dal80 yeast GATA factor across the body of highly expressed genes.

PLoS genetics : e1007999 : DOI : 10.1371/journal.pgen.1007999 Learn more
Summary

GATA transcription factors are highly conserved among eukaryotes and play roles in transcription of genes implicated in cancer progression and hematopoiesis. However, although their consensus binding sites have been well defined in vitro, the in vivo selectivity for recognition by GATA factors remains poorly characterized. Using ChIP-Seq, we identified the Dal80 GATA factor targets in yeast. Our data reveal Dal80 binding to a large set of promoters, sometimes independently of GATA sites, correlating with nitrogen- and/or Dal80-sensitive gene expression. Strikingly, Dal80 was also detected across the body of promoter-bound genes, correlating with high expression. Mechanistic single-gene experiments showed that Dal80 spreading across gene bodies requires active transcription. Consistently, Dal80 co-immunoprecipitated with the initiating and post-initiation forms of RNA Polymerase II. Our work suggests that GATA factors could play dual, synergistic roles during transcription initiation and post-initiation steps, promoting efficient remodeling of the gene expression program in response to environmental changes.

Fold up
Bingning Xie, Emmanuelle Becker, Igor Stuparevic, Maxime Wery, Ugo Szachnowski, Antonin Morillon, Michael Primig (2019 Feb 15)

The anti-cancer drug 5-fluorouracil affects cell cycle regulators and potential regulatory long non-coding RNAs in yeast.

RNA biology : 1-15 : DOI : 10.1080/15476286.2019.1581596 Learn more
Summary

5-fluorouracil (5-FU) was isolated as an inhibitor of thymidylate synthase, which is important for DNA synthesis. The drug was later found to also affect the conserved 3′-5′ exoribonuclease EXOSC10/Rrp6, a catalytic subunit of the RNA exosome that degrades and processes protein-coding and non-coding transcripts. Work on 5-FU’s cytotoxicity has been focused on mRNAs and non-coding transcripts such as rRNAs, tRNAs and snoRNAs. However, the effect of 5-FU on long non-coding RNAs (lncRNAs), which include regulatory transcripts important for cell growth and differentiation, is poorly understood. RNA profiling of synchronized 5-FU treated yeast cells and protein assays reveal that the drug specifically inhibits a set of cell cycle regulated genes involved in mitotic division, by decreasing levels of the paralogous Swi5 and Ace2 transcriptional activators. We also observe widespread accumulation of different lncRNA types in treated cells, which are typically present at high levels in a strain lacking EXOSC10/Rrp6. 5-FU responsive lncRNAs include potential regulatory antisense transcripts that form double-stranded RNAs (dsRNAs) with overlapping sense mRNAs. Some of these transcripts encode proteins important for cell growth and division, such as the transcription factor Ace2, and the RNA exosome subunit EXOSC6/Mtr3. In addition to revealing a transcriptional effect of 5-FU action via DNA binding regulators involved in cell cycle progression, our results have implications for the function of putative regulatory lncRNAs in 5-FU mediated cytotoxicity. The data raise the intriguing possibility that the drug deregulates lncRNAs/dsRNAs involved in controlling eukaryotic cell division, thereby highlighting a new class of promising therapeutical targets.

Fold up

Year of publication 2018

Antoine Hocher, Myriam Ruault, Petra Kaferle, Marc Descrimes, Mickaël Garnier, Antonin Morillon, Angela Taddei (2018 Oct 26)

Expanding heterochromatin reveals discrete subtelomeric domains delimited by chromatin landscape transitions.

Genome research : DOI : gr.236554.118 Learn more
Summary

The eukaryotic genome is divided into chromosomal domains of heterochromatin and euchromatin. Transcriptionally silent heterochromatin is found at subtelomeric regions, leading to the telomeric position effect (TPE) in yeast fly and human. Heterochromatin generally initiates and spreads from defined loci, and diverse mechanisms prevent the ectopic spread of heterochromatin into euchromatin. Here, we overexpressed the silencing factor Sir3 at varying levels in yeast and found that Sir3 spreads into Extended Silent Domains (ESDs), eventually reaching saturation at subtelomeres. We observed the spread of Sir3 into subtelomeric domains associated with specific histone marks in wild-type cells and stopping at zones of histone mark transitions including H3K79 tri-methylation levels. Our study shows that the conserved H3K79 methyltransferase Dot1 is essential in restricting Sir3 spread beyond ESDs, thus ensuring viability upon overexpression of Sir3. Lastly, our analyses of published data demonstrate how ESDs unveil uncharacterized discrete domains isolating structural and functional subtelomeric features from the rest of the genome. Our work offers a new approach on how to separate subtelomeres from the core chromosome.

Fold up
Watts BR, Wittmann S, Wery M, Gautier C, Kus K, Birot A, Heo DH, Kilchert C, Morillon A, Vasiljeva L (2018 Mar 26)

Histone deacetylation promotes transcriptional silencing at facultative heterochromatin

Nucleic Acid ResearchHistone deacetylation promotes transcriptional silencing at facultative heterochromatin : DOI : 10.1093/nar/gky232 Learn more
Summary

It is important to accurately regulate the expression of genes involved in development and environmental response. In the fission yeast Schizosaccharomyces pombe, meiotic genes are tightly repressed during vegetative growth. Despite being embedded in heterochromatin these genes are transcribed and believed to be repressed primarily at the level of RNA. However, the mechanism of facultative heterochromatin formation and the interplay with transcription regulation is not understood. We show genome-wide that HDAC-dependent histone deacetylation is a major determinant in transcriptional silencing of facultative heterochromatin domains. Indeed, mutation of class I/II HDACs leads to increased transcription of meiotic genes and accumulation of their mRNAs. Mechanistic dissection of the pho1 gene where, in response to phosphate, transient facultative heterochromatin is established by overlapping lncRNA transcription shows that the Clr3 HDAC contributes to silencing independently of SHREC, but in an lncRNA-dependent manner. We propose that HDACs promote facultative heterochromatin by establishing alternative transcriptional silencing.

Fold up
Porreca RM, Glousker G, Awad A, Matilla Fernandez MI, Gibaud A, Naucke C, Cohen SB, Bryan TM, Tzfati Y, Draskovic I, Londoño-Vallejo A (2018 Mar 7)

Human RTEL1 stabilizes long G-overhangs allowing telomerase-dependent over-extension

Nucleic Acids Research : DOI : 10.1093/nar/gky173 Learn more
Summary

Telomere maintenance protects the cell against genome instability and senescence. Accelerated telomere attrition is a characteristic of premature aging syndromes including Dyskeratosis congenita (DC). Mutations in hRTEL1 are associated with a severe form of DC called Hoyeraal-Hreidarsson syndrome (HHS). HHS patients carry short telomeres and HHS cells display telomere damage. Here we investigated how hRTEL1 contributes to telomere maintenance in human primary as well as tumor cells. Transient depletion of hRTEL1 resulted in rapid telomere shortening only in the context of telomerase-positive cells with very long telomeres and high levels of telomerase. The effect of hRTEL1 on telomere length is telomerase dependent without impacting telomerase biogenesis or targeting of the enzyme to telomeres. Instead, RTEL1 depletion led to a decrease in both G-overhang content and POT1 association with telomeres with limited telomere uncapping. Strikingly, overexpression of POT1 restored telomere length but not the overhang, demonstrating that G-overhang loss is the primary defect caused by RTEL1 depletion. We propose that hRTEL1 contributes to the maintenance of long telomeres by preserving long G-overhangs, thereby facilitating POT1 binding and elongation by telomerase.

Fold up
De Muyt A, Pyatnitskaya A, Andréani J, Ranjha L, Ramus C, Laureau R, Fernandez-Vega A, Holoch D, Girard E, Govin J, Margueron R, Couté Y, Cejka P, Guérois R, Borde V. (2018 Feb 1)

A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation

Genes & Development : DOI : 10.1101/gad.308510.117 Learn more
Summary

Meiotic crossover formation requires the stabilization of early recombination intermediates by a set of proteins and occurs within the environment of the chromosome axis, a structure important for the regulation of meiotic recombination events. The molecular mechanisms underlying and connecting crossover recombination and axis localization are elusive. Here, we identified the ZZS (Zip2-Zip4-Spo16) complex, required for crossover formation, which carries two distinct activities: one provided by Zip4, which acts as hub through physical interactions with components of the chromosome axis and the crossover machinery, and the other carried by Zip2 and Spo16, which preferentially bind branched DNA molecules in vitro. We found that Zip2 and Spo16 share structural similarities to the structure-specific XPF-ERCC1 nuclease, although it lacks endonuclease activity. The XPF domain of Zip2 is required for crossover formation, suggesting that, together with Spo16, it has a noncatalytic DNA recognition function. Our results suggest that the ZZS complex shepherds recombination intermediates toward crossovers as a dynamic structural module that connects recombination events to the chromosome axis. The identification of the ZZS complex improves our understanding of the various activities required for crossover implementation and is likely applicable to other organisms, including mammals.

Fold up
Adam C, Guérois R, Citarella A, Verardi L, Adolphe F Béneut C, Sommermeyer V, Ramus C, Govin J, Couté Y, Borde V (2018 Feb 1)

The PHD finger protein Spp1 has distinct functions in the Set1 and the meiotic DSB formation complexes

PLoS Genetics : 14(2) : DOI : 10.1371/journal.pgen.1007223 Learn more
Summary

Histone H3K4 methylation is a feature of meiotic recombination hotspots shared by many organisms including plants and mammals. Meiotic recombination is initiated by programmed double-strand break (DSB) formation that in budding yeast takes place in gene promoters and is promoted by histone H3K4 di/trimethylation. This histone modification is recognized by Spp1, a PHD finger containing protein that belongs to the conserved histone H3K4 methyltransferase Set1 complex. During meiosis, Spp1 binds H3K4me3 and interacts with a DSB protein, Mer2, to promote DSB formation close to gene promoters. How Set1 complex- and Mer2- related functions of Spp1 are connected is not clear. Here, combining genome-wide localization analyses, biochemical approaches and the use of separation of function mutants, we show that Spp1 is present within two distinct complexes in meiotic cells, the Set1 and the Mer2 complexes. Disrupting the Spp1-Set1 interaction mildly decreases H3K4me3 levels and does not affect meiotic recombination initiation. Conversely, the Spp1-Mer2 interaction is required for normal meiotic recombination initiation, but dispensable for Set1 complex-mediated histone H3K4 methylation. Finally, we provide evidence that Spp1 preserves normal H3K4me3 levels independently of the Set1 complex. We propose a model where Spp1 works in three ways to promote recombination initiation: first by depositing histone H3K4 methylation (Set1 complex), next by “reading” and protecting histone H3K4 methylation, and finally by making the link with the chromosome axis (Mer2-Spp1 complex). This work deciphers the precise roles of Spp1 in meiotic recombination and opens perspectives to study its functions in other organisms where H3K4me3 is also present at recombination hotspots.

Fold up
Alculumbre SG, Saint-André V, Di Domizio J, Vargas P, Sirven P, Bost P, Maurin M, Maiuri P, Wery M, Roman MS, Savey L, Touzot M, Terrier B, Saadoun D, Conrad C, Gilliet M, Morillon A, Soumelis V (2018 Jan 1)

Diversification of human plasmacytoid predendritic cells in response to a single stimulus

Nature Immunology : 19(1) : 63-75 : DOI : 10.1038/s41590-017-0012-z Learn more
Summary

Innate immune cells adjust to microbial and inflammatory stimuli through a process termed environmental plasticity, which links a given individual stimulus to a unique activated state. Here, we report that activation of human plasmacytoid predendritic cells (pDCs) with a single microbial or cytokine stimulus triggers cell diversification into three stable subpopulations (P1-P3). P1-pDCs (PD-L1+CD80-) displayed a plasmacytoid morphology and specialization for type I interferon production. P3-pDCs (PD-L1-CD80+) adopted a dendritic morphology and adaptive immune functions. P2-pDCs (PD-L1+CD80+) displayed both innate and adaptive functions. Each subpopulation expressed a specific coding- and long-noncoding-RNA signature and was stable after secondary stimulation. P1-pDCs were detected in samples from patients with lupus or psoriasis. pDC diversification was independent of cell divisions or preexisting heterogeneity within steady-state pDCs but was controlled by a TNF autocrine and/or paracrine communication loop. Our findings reveal a novel mechanism for diversity and division of labor in innate immune cells

Fold up

Year of publication 2017

Jahn A, Rane G, Paszkowski-Rogacz M, Sayols S, Bluhm A, Han CT, Draškovič I, Londoño-Vallejo JA, Kumar AP, Buchholz F, Butter F, Kappei D (2017 Jun 1)

ZBTB48 is both a vertebrate telomere-binding protein and a transcriptional activator

EMBO Report : 18(6) : DOI : 10.15252/embr.201744095 Learn more
Summary

Telomeres constitute the ends of linear chromosomes and together with the shelterin complex form a structure essential for genome maintenance and stability. In addition to the constitutive binding of the shelterin complex, other direct, yet more transient interactions are mediated by the CST complex and HOT1/HMBOX1, while subtelomeric variant repeats are recognized by NR2C/F transcription factors. Recently, the Kruppel-like zinc finger protein ZBTB48/HKR3/TZAP has been described as a novel telomere-associated factor in the vertebrate lineage. Here, we show that ZBTB48 binds directly both to telomeric and to subtelomeric variant repeat sequences. ZBTB48 is found at telomeres of human cancer cells regardless of the mode of telomere maintenance and it acts as a negative regulator of telomere length. In addition to its telomeric function, we demonstrate through a combination of RNAseq, ChIPseq and expression proteomics experiments that ZBTB48 acts as a transcriptional activator on a small set of target genes, including mitochondrial fission process 1 (MTFP1). This discovery places ZBTB48 at the interface of telomere length regulation, transcriptional control and mitochondrial metabolism.

Fold up
Dan Filipescu, Monica Naughtin, Katrina Podsypanina, Vincent Lejour, Laurence Wilson, Zachary A Gurard-Levin, Guillermo A Orsi, Iva Simeonova, Eleonore Toufektchan, Laura D Attardi, Franck Toledo, Geneviève Almouzni (2017 Mar 31)

Essential role for centromeric factors following p53 loss and oncogenic transformation.

Genes & development : 463-480 : DOI : 10.1101/gad.290924.116 Learn more
Summary

In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the Hjurp and Cenpa promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an “epigenetic addiction” to the HJURP chaperone represents an Achilles’ heel in p53-deficient transformed cells.

Fold up
Yann Duroc, Rajeev Kumar, Lepakshi Ranjha, Céline Adam, Raphaël Guérois, Khan Md Muntaz, Marie-Claude Marsolier-Kergoat, Florent Dingli, Raphaëlle Laureau, Damarys Loew, Bertrand Llorente, Jean-Baptiste Charbonnier, Petr Cejka, Valérie Borde (2017 Jan 5)

Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion.

eLife : DOI : 10.7554/eLife.21900 Learn more
Summary

Gene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLβ complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition. This recruitment is essential to limit gene conversion tract lengths genome-wide, without affecting crossover formation. Contrary to expectations, Mer3 helicase activity, proposed to extend the displacement loop (D-loop) recombination intermediate, does not influence the length of gene conversion events, revealing non-catalytical roles of Mer3. In addition, both purified Mer3 and MutLβ preferentially recognize D-loops, providing a mechanism for limiting gene conversion in vivo. These findings show that MutLβ is an integral part of a new regulatory step of meiotic recombination, which has implications to prevent rapid allele fixation and hotspot erosion in populations.

Fold up
Ourliac-Garnier I, Londoño-Vallejo A (2017 Jan 1)

Telomere Length Analysis by Quantitative Fluorescent in Situ Hybridization (Q-FISH)

Methods in Molecular Biology : 29-39 : DOI : 10.1007/978-1-4939-6892-3_3 Learn more
Summary

Length is a functional parameter of telomeres, the nucleoprotein structures that protect chromosome ends. The availability of highly specific, high affinity probes for telomeric repeat sequences allowed the development of quantitative approaches aimed at measuring telomere length directly on chromosomes or in interphase nuclei. Here, we describe a general method for telomere quantitative FISH on metaphase chromosomes and discuss its most common applications in research

Fold up

Year of publication 2016

Robert Jackson, Bruce A Rosa, Sonia Lameiras, Sean Cuninghame, Josee Bernard, Wely B Floriano, Paul F Lambert, Alain Nicolas, Ingeborg Zehbe (2016 Nov 4)

Functional variants of human papillomavirus type 16 demonstrate host genome integration and transcriptional alterations corresponding to their unique cancer epidemiology.

BMC genomics : 851 Learn more
Summary

Human papillomaviruses (HPVs) are a worldwide burden as they are a widespread group of tumour viruses in humans. Having a tropism for mucosal tissues, high-risk HPVs are detected in nearly all cervical cancers. HPV16 is the most common high-risk type but not all women infected with high-risk HPV develop a malignant tumour. Likely relevant, HPV genomes are polymorphic and some HPV16 single nucleotide polymorphisms (SNPs) are under evolutionary constraint instigating variable oncogenicity and immunogenicity in the infected host.

Fold up
Franck Assayag, André Nicolas, Sophie Vacher, Catherine Dehainault, Ivan Bieche, Didier Meseure, Isabelle Aerts, Nathalie Cassoux, Claude Houdayer, François Doz, Didier Decaudin (2016 Sep 23)

Combination of Carboplatin and Bevacizumab Is an Efficient Therapeutic Approach in Retinoblastoma Patient-Derived Xenografts.

Investigative ophthalmology & visual science : 4916-4926 : DOI : 10.1167/iovs.15-18725 Learn more
Summary

Retinoblastoma (Rb) is a rare childhood cancer of the retina with a survival rate of 95% in children living in high-income countries, after appropriate therapies such as chemotherapy, local ophthalmologic treatment, and radiotherapy. However, due to inactivation of the RB1 gene, all bilateral and almost 15% of unilateral retinoblastoma patients have a higher risk of s econdary cancers, especially sarcomas. Hence, new nonmutagen treatments are warranted. Therefore, we investigated the efficacy of therapy using anti-VEGF antibody bevacizumab, either alone or with carboplatin, in well-characterized Rb patient-derived xenografts (PDXs).

Fold up